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Summary 
 
     The results presented here are part of an ongoing research program, to develop strain 
rate dependent deformation and failure models for the analysis of polymer matrix 
composites subject to high strain rate impact loads.  A micromechanics approach is 
employed in this work, in which state variable constitutive equations originally developed 
for metals have been modified to model the deformation of the polymer matrix, and a 
strength of materials based micromechanics method is used to predict the effective 
response of the composite.  In the analysis of the inelastic deformation of the polymer 
matrix, the definitions of the effective stress and effective inelastic strain have been 
modified in order to account for the effect of hydrostatic stresses, which are significant in 
polymers.  Two representative polymers, a toughened epoxy and a brittle epoxy, are 
characterized through the use of data from tensile and shear tests across a variety of strain 
rates.  Results computed by using the developed constitutive equations correlate well 
with data generated via experiments.  The procedure used to incorporate the constitutive 
equations within a micromechanics method is presented, and sample calculations of the 
deformation response of a composite for various fiber orientations and strain rates are 
discussed. 
 
Introduction 
 
     NASA Glenn Research Center has an ongoing research program to investigate the 
feasibility of developing jet engine fan containment systems composed of polymer matrix 
composite materials.  To design such a system, the ability to correctly predict the 
nonlinear, strain rate dependent deformation and failure of the composite under high 
strain rate loading conditions is required.  Under these types of loading conditions, the 
material response can be highly strain rate dependent and nonlinear.  To design a 
composite containment system, the ability to accurately predict the nonlinearity and strain 
rate dependence of the composite response is essential. 
     In previous work, Goldberg (ref. 1) modified the Ramaswamy-Stouffer (ref. 2) state 
variable constitutive equations in order to model the nonlinear, strain rate dependent 
deformation response of polymeric matrix materials.  The constitutive equations were 
then implemented within a strength of materials based micromechanics model in order to 
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predict the effective strain rate dependent, nonlinear deformation response of carbon fiber 
reinforced polymer matrix composites. 
     Polymers are known to have a strain rate dependent deformation response that is 
nonlinear above about one or two percent strain.  Traditionally, viscoelasticity models 
have been used to capture this behavior (ref. 3).  However, there has been an interest in 
the research community in using constitutive equations developed for metals, based on 
plasticity and viscoplasticity approaches, to model the nonlinear, strain rate dependent 
behavior of polymers and polymer matrix composites.  The deformation mechanisms of 
polymers and metals are quite different.  However, on the phenomelogical level, there are 
some similarities in the deformation response that could justify the use of models 
developed for metals to analyze polymers.  For example, Ward (ref. 4) defined the “yield 
stress” in polymers as the stress level in a uniaxial tensile test where the stress-strain 
curve becomes flat and the inelastic strain rate equals the total strain rate.  This definition 
is identical to how the “saturation stress” has been defined in state variable based 
constitutive models for metals (ref. 2).  Furthermore, Ward (ref. 4) talks about the use of 
internal stresses to represent on the macroscopic level the effects of the resistance to 
molecular flow.  Similarly, in state variable viscoplastic constitutive models for metals 
state variables are used (ref. 5) to represent on a macroscopic level the resistance to 
inelastic deformation. 
     There are specific examples in the literature where researchers have utilized plasticity 
and viscoplasticity techniques to analyze the nonlinear, strain rate dependent response of 
polymers and polymer matrix composites.  For example, Sun and Chen (ref. 6) developed 
a macromechanical plasticity model based on a quadratic plastic potential function to 
model the nonlinear deformation of polymer matrix composites.  As part of this process, 
the effective stress and effective plastic strain were properly defined to coincide with the 
plastic potential function.  Weeks and Sun (ref. 7) and Thiruppukuzhi and Sun (ref. 8) 
expanded the methodology to incorporate rate dependence into the response.  Yoon and 
Sun (ref. 9) modified the Bodner unified viscoplasticity model developed for metals 
(ref. 5) to model the nonlinear, rate dependent deformation of polymer matrix 
composites.  Sun and Chen (ref. 10) applied plasticity theory to model the behavior of a 
polymer matrix, and then applied micromechanics techniques to determine the effective 
response of the composite.  Zhang and Moore (ref. 11) adapted the Bodner model to 
analyze the nonlinear uniaxial tensile response of polyethylene.  Bordonaro (ref. 12) and 
Krempl and Ho (ref. 13) adapted the viscoplasticity theory based on overstress (originally 
developed for metals) to analyze the nonlinear deformation of Nylon 66. 
     Unlike in metals, hydrostatic stresses are known to affect the yield stress and 
nonlinear response of polymers (ref. 4).  For example, the yield stress in compression is 
higher than the yield stress in tension.  In a simplified approach that was developed to 
account for these effects, the octahedral shear stress of a polymer at yield was set equal to 
the octahedral yield stress under pure shear loading plus a constant times the hydrostatic 
stress (ref. 14).  In more sophisticated techniques based on the Eyring energy approach, 
Ward (ref. 4) proposed that the hydrostatic pressure could be added as an additional term 
in the equation relating the octahedral strain rate to the octahedral shear stress at yield.  
Ellyin, et al. (ref. 15) incorporated mean stress effects into a nonlinear viscoelastic model 
for polymers by adding the hydrostatic stresses to the effective stress definition.  Hung 
and Liechti (ref. 16) incorporated mean stress effects into a macroscopic analysis of 



NASA/TM2002-211702 3 

polymer matrix composites by incorporating an additional term including the hydrostatic 
stresses into Sun and Chen’s (ref. 6) plasticity model.  Bordonaro (ref. 12) attempted to 
develop a method to incorporate hydrostatic stresses into the effective stress definition to 
be used in constitutive models to analyze polymers based on viscoplasticity theory.  Li 
and Pan (ref. 17), Chang and Pan (ref. 18) and Hsu, Vogler and Kyraikides (ref. 19) 
incorporated mean stress effects into viscoplasticity models for polymers through the 
application of variations of the Drucker-Prager yield criteria (ref. 20), in which mean 
stress effects are incorporated.  By applying the new yield criteria, modified definitions 
of the effective stress and effective plastic strain rate were developed.  While the attempts 
to account for the effects of hydrostatic stresses in developing yield criteria for polymers 
have been reasonably successful, the constitutive equations developed to model the full 
range of the nonlinear deformation response of polymers using plasticity and 
viscoplasticity techniques have not been fully successful in capturing the mean stress 
effects. 
     In previous research by the authors (ref. 1), only tensile tests of a representative 
polymer matrix material were available, along with tensile tests of a carbon fiber 
reinforced polymer matrix composite with various fiber layups.  Therefore, the 
constitutive equations were characterized based on the matrix tensile data, and the mean 
stress effects were accounted for by multiplying the shear terms in the effective stress 
definition by a factor including the ratio of the mean stress to the second invariant of the 
deviatoric stress tensor (J2) raised to a power.  The value of this exponent was determined 
empirically by correlating the tensile response of a composite with a shear dominated 
fiber layup, such as [±45°]2s. 
     The objective of the current research is to develop a more systematic, physically based 
method to account for the mean stress effects in the nonlinear analysis of a polymeric 
matrix material, where all of the material characterization is accomplished using resin 
data only.  Furthermore, through the use of a strength of materials based micromechanics 
method, the nonlinear, strain rate dependent deformation of polymer matrix composites 
can be predicted, with the mean stress effects appropriately accounted for.  In this study, 
first the state variable constitutive equations used to predict the strain rate dependent, 
nonlinear deformation of the polymer matrix are discussed, and the methods used to 
incorporated mean stress effects are described in detail.  Next, the model is exercised by 
characterizing two representative polymers using tensile and shear data over a variety of 
strain rates.  The deformation response of the polymers is then computed to demonstrate 
the ability of the model to accurately compute the polymer behavior.  The 
implementation of the constitutive equations within a strength of materials based 
micromechanics method is then presented, and the nonlinear, strain rate dependent 
deformation response of a representative polymer matrix composite is predicted. 
 
Polymer Constitutive Equations 
 
Overview 
     For this study, the Bodner state variable constitutive equations (ref. 5), which were 
originally developed to analyze the viscoplastic deformation of metals above one-half of 
the melting temperature, were modified to analyze the strain rate dependent, nonlinear 
deformation of the polymeric matrix material.  In state variable constitutive equations, a 
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single unified strain variable is defined to represent all inelastic strains (ref. 2).  
Furthermore, in the state variable approach there is no defined yield stress.  Inelastic 
strains are assumed to be present at all values of stress, only at a very small level in the 
“elastic” range of deformation.  State variables, which evolve with stress and inelastic 
strain, are defined to represent the average effects of the deformation mechanisms. 
     In previous research on this project (ref. 1), the Ramaswamy-Stouffer model (ref. 2) 
was used as the basis for the polymer constitutive equations.  In the Ramaswamy-Stouffer 
equations as used in reference 1, the components of the inelastic strain rate were a 
function of the overstress, the difference between the deviatoric stress components and 
the components of the tensorial internal stress state variable.  A material constant in the 
equations represented any initial isotropic hardness of the material.  In the Bodner 
equations (as used and modified for this study) on the other hand, the components of the 
inelastic strain rate are a function of the deviatoric stresses only, not the overstress, and 
the resistance to inelastic deformation is represented through a single, isotropic, state 
variable.  This formulation allows for a more systematic modification of the effective 
stress definitions in order to account for the mean stress effects.  Furthermore, as 
discussed in Qian and Liu (ref. 21) for example, one can argue that in the initial stages of 
polymer deformation an isotropic resistance to molecular flow (simulating a nonlinear 
viscosity) more accurately represents the actual polymer behavior. 
     Several limitations and assumptions have been specified in the development of the 
constitutive equations.  Currently temperature effects are neglected.  While the 
deformation response of polymers varies significantly with temperature, only room 
temperature data have been obtained at this time, so the effects of temperature are not 
considered.  However, since temperature effects can be significant, particularly when 
considering thermal stresses in polymer matrix composites, this capability will be added 
in the future.  Moisture effects, while possibly significant in polymer matrix composites, 
are also not included at the current time but may be added in the future.  The nonlinear 
strain recovery observed in polymers on unloading is not simulated, and phenomena such 
as creep, relaxation and high cycle fatigue are not currently accounted for in the 
equations.  However, since mean stress effects are important even in metals for the 
analysis of high cycle fatigue (ref. 22), in the future if fatigue analysis capabilities are 
added to the constitutive equations for polymers the mean stress effects will likely be 
even more significant.  Small strain theory is assumed to apply in the current analysis. 
 
Flow and Evolution Equations 
     In the modified Bodner model, the components of the inelastic strain rate I

ijε!  are 

defined as a function of the deviatoric stress components sij, the second invariant of the 
deviatoric stress tensor J2 and an isotropic state variable Z which represents the resistance 
to molecular flow (internal stress) in the form 
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where Do and n are material constants.  Do represents the maximum inelastic strain rate, 
and n controls the rate dependence of the material.  The elastic components of strain are 
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added to the inelastic strain to obtain the total strain.  The term σe represents the effective 
stress state in the material, and was modified from the original formulation (ref. 5) in 
order to account for the effects of hydrostatic stresses in a polymeric material.  Based on 
the formulation used by Chang and Pan (ref. 18) and Hsu, et al. (ref. 19), the effective 
stress is defined as follows in this work in order to account for the effects of hydrostatic 
stresses 
 

 kke J ασσ += 23        (2) 
 
where α is a state variable controlling the level of the mean stress effects and σkk is the 
summation of the normal stress components (equal to three times the mean stress).  This 
formulation of the effective stress is based on the Drucker-Prager (ref. 20) yield criteria.  
Under pure shear loading, the mean stress is equal to zero and the equation reduces to the 

original formulation (ref. 5), in which the effective stress was set equal to 23J  for all 
loading conditions. 
     The rate of evolution of the internal stress state variable Z and the mean stress effect 
state variable α are defined by the equations 
 
 ( ) I

eeZZqZ !! −= 1         (3) 
 
 ( ) I

eeq !! ααα −= 1         (4) 
 
where q is a material constant representing the “hardening” rate, and Z1 and α1 are 
material constants representing the maximum values of Z and α, respectively.  The initial 
values of Z and α are defined by the material constants Zo and αo.  The term I

ee!  in 

Equations 3 and 4 represents the effective deviatoric inelastic strain rate, defined as 
follows 
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where I

ijε!  are the components of the inelastic strain rate tensor and I
mε!  is the mean 

inelastic strain rate.  In the original Bodner model (ref. 5), the total inelastic strain and 
strain rate are used in the evolution law and are assumed to be equal to their deviatoric 
values.  As discussed by Li and Pan (ref. 17), since mean stresses contribute to the 
inelastic strains in polymers, indicating volumetric effects are present, the mean inelastic 
strain rate cannot be assumed to be zero, as in the case in the inelastic analysis of metals.  
An important point to note is that in the original Bodner model (ref. 5), the inelastic work 
rate was used instead of the effective inelastic strain rate in the evolution equation for the 
internal stress state variable.  However, for this work the inelastic strain rate was deemed 
easier to work with from both computational and characterization points of view, 
particularly in the incorporation of mean stress effects.  Furthermore, the inelastic strain 
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rate has been used in other state variable constitutive models (ref. 2), and as will be 
shown later, the equations as given produced good results.  Since hydrostatic stress 
effects were not considered in the original Bodner model (ref. 5), the evolution equation 
for α is new to this work.  The state variable α is assumed to evolve in the same manner 
as the state variable Z.  As will be pointed out later, by using this assumption the value of 
q used in Equation 3 will be the same as the value of q used in Equation 4. 
 
Determination of Material Constants 
     The material constants that need to be determined include D0, n, Zo, Z1, αo, α1, and q.  
The procedure to be used is summarized here.  More details on the general approach can 
be found in Stouffer and Dame (ref. 2) and Bodner (ref. 5).  The values of D0, n, and Z1 
are characterized as follows using Equation 1.  The value of D0 is currently assumed to be 
equal to a value of 104 times the maximum applied strain rate, which correlates with the 
maximum inelastic strain rate.   Equation 1 is simplified to the case of pure shear loading, 
leading to the following expression 
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where Iγ!  is the engineering shear strain rate, τ is the shear stress, and the remainder of 
the terms are as defined earlier.  The case of pure shear loading is used to characterize the 
equations for two reasons.  First, mean stress effects are not present in the case of pure 
shear loading, so those material constants do not enter into the picture, simplifying the 
initial characterization.  Second, since polymers tend to be more ductile in shear than in 
uniaxial tension, the pure shear stress-strain curves obtained experimentally are more 
likely to display a defined “saturation” stress, which as shown below is crucial for 
determining the material constants.  If only uniaxial tensile and compressive curves are 
available, procedures will be given later for determining the equivalent shear stresses at 
saturation. 
     Next, Equation 6 is rearranged as follows 
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and the natural logarithm of both sides of the resulting expression is taken.  The values of 
the inelastic shear strain rate, shear stress, and state variable Z at “saturation” or “yield” 
are substituted into the resulting expression, resulting in the following equation 
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where τs equals the saturation shear stress, oγ!  is the constant applied total engineering 
shear strain rate in a constant strain rate shear test, and the remaining terms are as defined 
earlier.   
     The required constants are determined from a set of shear stress-strain curves obtained 
from constant strain rate tests.  Each curve in this set is obtained at a different constant 
strain rate.  Data pairs of the total strain rate and saturation shear stress values from each 
curve are taken.  For each strain rate, the data values are substituted into Equation 8, and 
represent a point on a master curve.  The number of points in the master curve equal the 
number of strain rates at which tensile tests were conducted.  A least squares regression 
analysis is then performed on the master curve.  As suggested by Equation 8, the slope of 
the best-fit line is equal to -2n. The intercept of the best-fit line is equal to 2n(ln (Z1)). 
     To determine the value of Zo, first Equation 7 is rearranged as follows 
 

 τγ
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where all of terms are as defined earlier.  To find the value of Zo from Equation 9, the 
value of the shear stress where the stress-strain curve becomes nonlinear for a particular 
constant strain rate shear test is used for the value of τ.  The point where the stress-strain 
curve becomes nonlinear is defined as the approximate point where the curve appreciably 
deviates from a linear extrapolation of the initial data.  The value of Iγ!  is set equal to the 
approximate inelastic shear strain rate when the stress-strain curve becomes nonlinear.  
The shear strain rate used in the test divided by 100 was found by trial and error to 
approximate this value reasonably well.  Using this data, Equation 9 is solved for Z, 
which is assumed to be equal to the value of Zo.  Using the data from the lowest strain 
rate test available has been found to give adequate values of Zo.  However, the 
calculations can be made using data from all the available strain rates, and an average 
taken if required to obtain the value of the constant. 
     To determine the value for q for Equations 3 and 4, first Equation 3 is integrated for 
the case of pure shear loading, resulting in the following relation 
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where γI is the inelastic shear strain.  At saturation, the value of the internal stress Z is 
assumed to approach Z1, resulting in the exponential term approaching zero.  Assuming 
that saturation occurs when the following condition is satisfied 
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the equation is solved for q, where γs

I is the inelastic shear strain at saturation.  If the 
inelastic shear strain at saturation is found to vary with strain rate, the parameter q is 



NASA/TM2002-211702 8 

computed at each strain rate and regression techniques are utilized to determine an 
expression for the variation of q.  If Equation 4 is integrated, an expression similar to 
Equation 10 is obtained.  At saturation, the value of α is assumed to approach α1, so an 
equation identical to Equation 11 is obtained, which would lead to the same value for q.  
Therefore, identical values of q are used in Equation 3 and Equation 4. 
     To obtain the values of α1 and αo, Equation 2 is used in combination with stress-strain 
data from constant strain rate uniaxial tensile tests and constant strain rate shear tests.  
The primary assumption used at this point (and assumed implicitly in Equation 2) is that 
the effective stress at saturation under uniaxial tensile loading at a particular strain rate is 
equal to the effective stress at saturation under pure shear loading at the same equivalent 
strain rate.  Likewise, the effective stress at the point the stress-strain curve becomes 
nonlinear under tensile loading is equal to the effective stress at the point the stress-strain 
curve becomes nonlinear under shear loading.  Therefore, assuming the value of α at 
saturation is equal to α1, and the value of α at the point the stress-strain curve becomes 
nonlinear is equal to αo, the following equations are obtained for the case of having data 
from uniaxial tension tests and pure shear tests 
 

 ( ) ss τασ 31 1 =+  (12) 
 

 ( ) nlonl τασ 31 =+  (13) 
 
where σs and τs are the tensile and shear stresses at saturation, respectively, and σnl and 
τnl are the tensile and shear stresses at the point where the respective stress-strain curves 
become nonlinear.  The required constants can then be determined from these equations.  
The values of the material constants are assumed to be rate independent, so the results 
from only one strain rate need to be used to find the needed parameters.  In practical 
application of the methodology, the uniaxial tension and pure shear tests used do not have 
to be at the exact same effective strain rate.  As long as the effective strain rates from the 
two tests are approximately equal, the values obtained have been found to be valid. 
     Similar procedures can be used to determine the values of α1 and αo based on the 
results of uniaxial tension and uniaxial compression tests, as well as uniaxial compression 
and pure shear tests.  If pure shear tests are not available, but the results of constant strain 
rate uniaxial tension and constant strain rate uniaxial compression tests at several strain 
rates are available, as just mentioned Equation 2 can be used to obtain the values of α1 
and αo in a manner similar to that described above.  A procedure similar to that described 
in Equations 6–11 could then be used with either the tensile or compressive data to obtain 
the remainder of the material constants. 
 
Numerical Integration of Constitutive Equations 
     To integrate the flow and evolution equations in a computer algorithm, a standard 
fourth order Runge-Kutta integration routine was used (ref. 23).  For this class of 
equations, implicit integration routines have often been used because of their inherent 
numerical stability (ref. 2).  However, to be able to use the equations in impact studies, 
the equations will need to be implemented into a transient dynamic finite element code, 
which uses explicit integration schemes.  Therefore, an explicit integration scheme was 
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used here in order to facilitate the eventual finite element implementation.  The Runge-
Kutta method was employed for this study due to its simplicity and ease of 
implementation.  Strain controlled loading was assumed in the algorithm in order to 
facilitate the eventual implementation of these equations into an explicit finite element 
code.  In addition, the tensile and shear tests conducted in this study were carried out at 
constant strain rate.  Therefore, using a strain controlled loading algorithm simplified the 
analytical simulation of the experiments. 
     To determine the values of the total strain, inelastic strain, internal stress and mean 
stress effect state variable at time t+∆t, the following algorithm is used for each step of 
the Runge-Kutta integration.  The strains or strain estimates are passed into the routine.  
The stresses are then computed using the elastic constants and the current value of the 
inelastic strains.  The effective stress is then determined using Equation 2, and the 
components of the inelastic strain rate tensor are calculated using Equation 1.  From this 
information, the effective deviatoric inelastic strain rate is determined using Equation 5, 
and the state variable rates are computed using Equations 3 and 4.  The elastic constants 
and the inelastic strain rates are then used to determine the total strain rates.  The Runge-
Kutta algorithm is then used to calculate the revised total and inelastic strains and the 
new values of the state variables. 
 
Simulation of Strain Rate Dependent Polymer Shear and Tensile Deformation 
 
     To demonstrate the ability of the developed constitutive equations to correctly analyze 
the mean stress dependent deformation response of polymers, two representative 
materials were analyzed.  The first material, PR520, is a toughened epoxy.  The second 
material, E-862, is a standard brittle epoxy.  By examining these materials, the ability of 
the constitutive model to correctly analyze a variety of polymers could be examined.  
Details of the experimental procedure and experimental results will be given in a future 
report.  However, a summary is given here for completeness.  Longitudinal tensile tests 
and pure shear tests were conducted at room temperature on the materials at strain rates 
of about 5×10–5 /sec, 1 /sec and 400 /sec.  The low and moderate strain rate tests were 
conducted using an Instron hydraulic testing machine.  The high strain rate tests were 
conducted using a split Hopkinson bar.  Engineering stress and engineering strain were 
measured until failure. 
     Shear stress-shear strain curves for PR520 obtained under pure shear loading are 
shown in Figure 1 for each of the strain rates examined, while tensile stress-strain curves 
are shown in Figure 2.  The material has a strain rate dependent, nonlinear deformation 
response under both types of loading.  For the shear tests at high strain rates, the sharp 
increase in stress at the beginning of the loading with negligible increase in strain is most 
likely the result of a lack of stress equilibrium at the start of loading.  The oscillations 
seen in the tensile response at high strain rates are most likely due to the specimen 
geometry leading to the stress waves being visible in the response.  The failure stresses 
under tensile loading appear not to vary with strain rate.  The causes of this are still under 
investigation.  Physical reasons for the constant failure stresses may be related to a 
ductile-brittle transition taking place as the strain rate is increased.  However, particularly 
for the high strain rate tests, the failure stresses may be artificially low due to the 
presence of strain gages on the specimen.  Shear stress-shear strain curves for E-862 for 
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all three strain rates are shown in Figure 3, and tensile stress-strain curves are shown in 
Figure 4.  The shear stress-strain curves display significant nonlinearity and strain rate 
dependence.  The tensile specimens at the moderate and high strain rate show a very low 
failure stress, much lower than that seen for the low strain rate specimen.  The specific 
reasons for this are still being studied, but preliminary investigations not discussed here 
indicate that the premature failure may be due to the presence of the strain gages and how 
they are glued onto the specimen.  The other features of the deformation response of  
E-862 are similar to those observed for PR520.  Again, a detailed discussion of the 
experimental results will be given in a future report.  The material constants for both 
polymers were determined using the procedures described earlier in this report and are 
listed in Table 1. 
     The shear stress-shear strain curves computed for all three strain rates, along with the 
experimental results for comparison, are shown in Figure 5 for PR520 and Figure 6 for  
E-862.  Overall, the computed results correlate well with the experimental values for all 
strain rates for both materials.  Specifically, the nonlinearity and rate dependence of the 
experimental results are captured qualitatively, and the quantitative match between the 
experimental and computed results is reasonably good.  The high strain rate results are 
somewhat underpredicted for both materials (particularly for E-862), particularly at the 
lower strains, but this is due to the fact that in the experiments the initial stresses 
increased significantly with a negligible increase in strain, and thus the initial modulus of 
the material was computed using data obtained after the strain became non-negligible.  
Further tests are being conducted in order to obtain refined stress strain curves that do not 
have this problem.  The overall computed shape of the curves, and the final computed 
saturation stresses, compare well with the experimental results, however. 
     The tensile stress-strain curves computed for all three strain rates, again with the 
experimental results for comparison, are shown in Figure 7 for PR520 and Figure 8 for  
E-862.  Once again, the computed results correlate well with the experimental values for 
all three strain rates.  The nonlinearity and rate dependence of the experimental results is 
captured, and the quantitative comparison between the experimental and computed 
results is again good.  In the case of the high strain rate results, the oscillated results are 
bisected well by the computed values.  For the tensile results, the important point to note 
is that the material constants were primarily computed using the shear data, and the 
comparison of the tensile data to the computed results is still quite good. 
     To further explore the significance of properly accounting for the mean stress  
effects in the analysis, the tensile stress-strain curve for PR520 at the low strain rate of 
5×10–5 /sec is once again considered.  In Figure 9, the experimental stress-strain curve, 
along with the original computed curve, is presented.  Two additional computed results 
are given in the figure.  First, a tensile curve computed without the mean stress effect 
included (αo=α1=0) is given.  Second, a set of results computed with a constant α (set 
equal to α1) is presented.  The tensile curve computed without accounting for mean stress 
effects significantly overpredicts the stresses as compared to the experimental results, 
indicating that mean stress effects are significant for polymers, and accounting for them 
in an analysis is crucial.  Furthermore, in the results computed assuming a constant α the 
stresses are overpredicted compared to the experimental values for a significant portion 
of the nonlinear region of the tensile curve.  In most of the attempts by other researchers 
to account for the effects of hydrostatic stresses described in the first section of this 
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report, the mean stress effects were assumed to be constant (reflected in a static material 
property) throughout the course of the deformation.  These results indicate that the effect 
of the mean stresses does vary throughout the polymer deformation, and must be 
accounted for in the analysis. 
 
Composite Micromechanical Analysis 
 
     Micromechanical techniques are used to predict the effective properties and 
deformation response of the individual plies in a composite laminate.  The effective 
properties and deformation response are computed based on the properties of the 
individual constituents. Lamination theory can then be used to compute the effective 
deformation response of the entire composite.  The constitutive equations described 
above have been implemented within a micromechanics method in order to enable the 
prediction of the nonlinear, strain rate dependent deformation response of polymer matrix 
composites with the effects of hydrostatic stresses incorporated into the analysis.  The 
micromechanics method has been described extensively in Goldberg (ref. 24).  A 
summary of the methodology will be given here. 
     For this work the unit cell, the smallest material unit for which the response can be 
considered to be representative of the entire composite ply, is defined to consist of a 
single fiber and its surrounding matrix.  Due to symmetry, only one-quarter of the unit 
cell was analyzed.  The composites are assumed to have a periodic, square fiber packing 
and a perfect interfacial bond is specified.  The fibers are assumed to be transversely 
isotropic and linear elastic with a circular cross-section.  The matrix is assumed to be 
isotropic, with a rate dependent, nonlinear deformation response computed using the 
equations described in the previous section of this report.  A key assumption of this 
approach is that the in-situ matrix properties are equivalent to the bulk properties of the 
polymer.  However, the advantage of using this type of methodology is that it is simpler 
to conduct experiments on the pure resin and to determine the material constants from the 
pure resin data as opposed to trying to back out the resin properties from composite test 
data.  Furthermore, a key goal of this research is to provide a methodology that facilitates 
reducing the amount of testing of the composite that is required to obtain strain rate 
dependent material properties that can be input into a finite element code.  Conducting 
strain rate dependent tensile tests on the pure resin and using that data to predict the 
composite deformation response is also much simpler than conducting tests on the 
composite.  However, if in comparing test data obtained from composite specimens to 
analytical predictions it appears that the bulk matrix properties do not accurately reflect 
the in-situ state of the matrix, the polymer properties can always be appropriately 
adjusted. 
     The unit cell is divided up into an arbitrary number of rectangular, horizontal slices of 
equal thickness, as is shown in Figure 10.  Similar approaches have been used by 
researchers such as Whitney (ref. 25), Greszczuk (ref. 26) and Mital, et al. (ref. 27).  Each 
slice is assumed to be in a state of plane stress.  This assumption is made based on the 
fact that laminate theory will be applied to each ply of the composite laminate, which 
implies that the unit cell and every slice within the unit cell is in a state of plane stress.   
The top and bottom slices in the unit cell are composed of pure matrix.  The remaining 
slices are composed of two subslices; one composed of fiber material and the other 
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composed of matrix material.  For the slices containing both fiber and matrix, the out-of-
plane stresses can be nonzero in individual subslices, but the volume average of the out-
of-plane stresses must be equal to zero.  By using this approach, the behavior of each 
slice is decoupled, and the response of each slice can be determined independently, which 
significantly reduces the level of complexity in the analysis.  Laminate theory is then 
used to obtain the effective response of the unit cell.  In the future, the ability to 
incorporate transverse shear stresses and transverse pressures will be added to the model 
as these loading conditions might be significant in an impact analysis.  In this case, the 
out-of-plane stresses would be constant throughout the unit cell. 
      The thickness, fiber volume ratio and thickness ratio (the ratio of the slice thickness 
to the total unit cell thickness) for each slice can be determined using the composite fiber 
volume ratio and geometric principles.  The unit cell is assumed to measure one unit in 
length by one unit in height.  The first step is to compute the area of the cross-section of 
the fiber within each slice.  The overall diameter of the fiber (df) is related to the fiber 
volume fraction of the overall composite (Vf) through the following relationship 
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and this term can be used along with the standard geometric definition of the radius of a 
circle to compute the horizontal coordinate of any point on the outer surface of the fiber 
in terms of the fiber volume fraction and the vertical coordinate.  The area of the portion 
of the fiber contained within each slice (Af

i) can computed by integrating the resulting 
expression between the vertical (z) coordinates of the top and bottom of slice “i” 
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which is also the equivalent area of the rectangular fiber slice in the analysis cell. 
     The fiber volume fraction of each slice composed of fiber and matrix is equal to the 
fiber area in each slice divided by the total slice area.  The thickness ratio for each slice 
composed of both fiber and matrix is equal to the slice thickness divided by the assumed 
total height of the analysis cell.  The fiber volume fraction of the top slice consisting of 
matrix only is equal to zero, and the thickness ratio of the top slice is equal to one minus 
the sum of the thickness ratio of the remaining slices. 
     The effective properties, effective inelastic strains and effective thermal strains of 
each slice are computed independently.  The responses of each slice are combined using 
laminate theory to obtain the effective response of the corresponding lamina.  
Micromechanics equations are developed for those slices composed of both fiber and 
matrix material.  The stresses in the slices composed of pure matrix can be computed 
using the matrix elastic properties and inelastic constitutive equations.  The standard 
transversely isotropic compliance matrix (or isotropic in the case of the matrix) is used to 
relate the local strains to the local stresses in the fiber and matrix.  Each slice is assumed 
to be in a state of plane stress on the global level, but out-of-plane normal stresses can 
exist in each subslice. 
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     Along the fiber direction (direction 11), the strains are assumed to be uniform in each 
subslice, and the stresses are combined using volume averaging.  The in-plane transverse 
normal stresses (22 direction) and the in-plane shear stresses (12 direction) are assumed 
to be uniform in each subslice, and the strains are combined using volume averaging.  
The out-of-plane strains (33 direction) are assumed to be uniform in each subslice.  The 
volume average of the out-of-plane stresses in each subslice is assumed to be equal to 
zero, enforcing a plane stress condition on the global level for the slice.   
     The orthotropic compliance matrix is used to relate the strains (εij) to the stresses (σij) 
in each constituent, using the following relations   
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where α11, α22, and α33 are the coefficients of thermal expansion, ∆T is the change in 
temperature and εij

I are the inelastic strains.  Note that in these equations Sij represents the 
components of the compliance matrix, not the components of the deviatoric stress tensor 
sij as in the description of the polymer constitutive equations and that the coefficients of 
thermal expansion αij have no relation to the material constants α1 and αo in the polymer 
model.  Also note that engineering shear strains (γij) are used in the analysis. 
     The addition of the inelastic strain components to the standard orthotropic elastic 
constitutive law facilitates the incorporation of inelasticity into the constitutive relations.  
For the fiber, which is assumed to be linear elastic, these components are neglected.  For 
the fiber, which is transversely isotropic, S13 is set equal to S12 and S33 is set equal to S22.  
For the matrix material, which is assumed to be isotropic, S23 and S13 are set equal to S12, 
and S22 and S33 are set equal to S11.  Furthermore, α33 is set equal to α22 for the fiber and 
α33 and α22 are set equal to α11 for the matrix. 
     By combining the uniform stress and uniform strain assumptions with the constituent 
stress-strain relations, a system of four simultaneous equations results that can be solved 
for the unknown stresses in the subslices.  The total strains and subslice inelastic strains 
are considered to be the known values in solving this problem.  By substituting the 
subslice stresses back into the equations defining the uniform stress assumptions, the 
effective elastic constants, effective inelastic strains and effective thermal strains of the 
slice can be computed.  By applying classical laminate theory at this point, the effective 
stiffness matrix, effective inelastic strains and effective thermal strains for the unit cell 
are computed.  Laminate theory is applied once again to obtain the effective properties 
and force resultants due to inelastic and thermal strains for the multilayered composite 
laminate.  Further information on all of these procedures can be found in Goldberg 
(ref. 24). 
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Simulation of Strain Rate Dependent Composite Deformation 
 
     To verify the ability of the micromechanics equations combined with the revised 
polymer constitutive equations to accurately model the deformation response of polymer 
matrix composites, a series of analyses have been carried out on a representative 
composite.  Experimental tests have not yet been conducted on composites made using 
either of the polymers (PR520 and E-862) described in the previous section.  Therefore, 
data from literature was used to verify the implementation of the revised polymer 
constitutive equations into the micromechanics framework.  A PEEK thermoplastic 
matrix was characterized using the procedures described earlier based on data in Hsu, 
et al. (ref. 19) and the material constants are listed in Table 1.  Experimental (ref. 19) and 
computed compressive stress-strain curves are shown for the PEEK matrix in Figure 11.  
The computed stress-strain curves capture the rate dependence and nonlinearity of the 
experimental results, and the quantitative comparison between the experimental and 
computed results is quite good.   These results further demonstrate the ability of the 
polymer constitutive equations to analyze the deformation response of a wide variety of 
polymers (epoxies, toughened epoxies and thermoplastics).  The composite material 
examined consists of AS4 carbon fibers embedded in a PEEK matrix.  Tensile curves 
were obtained by Weeks and Sun (ref. 7) for composites with a variety of laminate 
orientations at strain rates of 1×10–5 /sec and 0.1 /sec.  The fiber volume ratio of the 
AS4/PEEK composite is 0.62.  The elastic properties of the AS4 fibers (ref. 28) include a 
longitudinal tensile modulus of 214 GPa, a transverse tensile modulus of 14 GPa, a 
longitudinal Poisson’s ratio of 0.20, a transverse Poisson’s ratio of 0.25, and an in-plane 
shear modulus of 28 GPa.  As mentioned earlier, while thermal and moisture effects may 
affect the deformation response in polymer matrix composites, since temperature and 
moisture dependent data was not available for the matrix materials under consideration, 
and since these effects were not accounted for within the polymer constitutive equations 
at the current time, thermal and moisture effects were neglected for these analyses.  The 
effects of temperature and moisture are merely noted as a possible source of error in the 
current computations. 
     Experimental and computed longitudinal tensile stress-strain curves for AS4/PEEK at 
room temperature at strain rates of 0.00001 /sec and 0.1 /sec are shown in Figures 12 and 
13.  Only relatively low strain rates were examined due to the lack of available high 
strain rate data for this material and its matrix constituent.  Also, note that the tensile 
curves are not necessarily taken until failure.  Furthermore, the current analytical model 
does not make failure predictions.  In Figure 12 results for laminates with a [30°] fiber 
orientation are shown and in Figure 13 results for laminates with a [45°] fiber orientation 
are shown.  With these fiber orientations, the matrix in the composite is subjected to a 
multiaxial stress state, with tensile, compressive, and shear stresses, and as a result the 
ability of the micromechanics method in combination with the polymer constitutive 
equations to accurately capture the mean stress effects in the polymer deformation (and 
by extension the composite deformation) could be examined.  As can be seen in both 
figures, the nonlinearity and strain rate dependence of the composite deformation as well 
as the shape of the curves are captured by the analysis.  Quantitatively, the match 
between the experimental and computed results is also reasonably good.  The stresses for 
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the [45°] laminate at the lower strain rate are somewhat overpredicted for reasons that are 
not clear at this time, but otherwise the computed stresses closely match the experimental 
stresses.  Since for the laminate orientations examined both tensile and shear stresses are 
present in the composite, the analytical results indicate that the mean stress effects are 
also being captured correctly. 
 
Conclusions 
 
     An analytical model has been developed to analyze the strain rate dependent, 
nonlinear deformation of polymers and polymer matrix composites in which the effects 
of hydrostatic stresses on the nonlinear deformation are systematically accounted for.  
State variable constitutive equations based on the Bodner viscoplasticity model have been 
modified to analyze the deformation of polymer matrix materials.  The effects of 
hydrostatic stresses on the inelastic deformation have been accounted for by modifying 
the effective stress and effective plastic strain definitions through the use of a variation of 
the Drucker-Prager yield criterion.  The tensile and shear deformation of two 
representative polymers have been accurately simulated using the constitutive model. 
     The constitutive equations have been implemented within a mechanics of materials 
based micromechanics method that employs fiber substructuring to enable the prediction 
of the strain rate dependent, nonlinear deformation of polymer matrix composites.  The 
longitudinal tensile deformation of a representative polymer matrix composite was 
accurately predicted for two laminate orientations and two strain rates, indicating that the 
analysis is correctly capturing the important features of the deformation response.   
     The analytical methods described in this study can be used in explicit finite element 
codes to provide a more realistic analysis of deformation during blade-out events for fan 
containment systems composed of composite materials.  While all of the loading 
conditions present in an impact situation may not be present in the current model (such as 
out-of-plane loading and fatigue loading), the current analysis techniques can still provide 
insight into the strain rate dependent deformation of composites under an impact 
situation.  Immediate future efforts, not including other longer term future efforts 
discussed in earlier parts of this report, will include adding the ability to account for 
thermal effects to the polymer constitutive equations.  The micromechanics will also be 
modified to allow for the analysis of woven and braided composites. 
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TABLE 1.MATERIAL PROPERTIES FOR POLYMER MATRIX MATERIALS 
 

 Strain 
Rate 
/sec 

Modulus 
GPa 

Poisson’s 
Ratio 

Do 
1/sec 

n Zo 
MPa 

Z1 
MPa 

q αo α1 

0.00001 3.24 
1.4 4.15 

PR520 

450 5.65 

0.38 1×106 0.92 402.53 766.73 247.44 0.983 0.209 

0.00001 2.93 
1.4 3.26 

E-862 

450 5.17 

0.38 1×106 0.80 436.59 842.80 134.10 0.882 0.161 

PEEK All 4.00 0.40 1×106 1.25 231.67 596.94 254.68 0.200 0.077 
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Figure 1: Experimental shear stress-shear strain curves for PR520 resin at strain rates of 
7.5×10–5 /sec, 1.5 /sec and 404 /sec. 
 

Figure 2: Experimental tensile stress-strain curves for PR520 resin at strain rates of  
5×10–5 /sec, 1.4 /sec and 470 /sec. 
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Figure 3: Experimental shear stress-shear strain curves for E-862 resin at strain rates of 
7.5×10–5 /sec, 1.5 /sec and 404 /sec. 
 

Figure 4: Experimental tensile stress-strain curves for E-862 resin at strain rates of 
5.7×10–5 /sec, 1.4 /sec and 455 /sec. 
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Figure 5: Experimental and computed shear stress-shear strain curves for PR520 resin at 
strain rates of 7.5×10–5 /sec, 1.5 /sec and 404 /sec. 
 

Figure 6: Experimental and computed shear stress-shear strain curves for E-862 resin at 
strain rates of 7.5×10–5 /sec, 1.5 /sec and 404 /sec. 
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Figure 7: Experimental and computed tensile stress-strain curves for PR520 resin at strain 
rates of 5×10–5 /sec, 1.4 /sec and 470 /sec. 
 

Figure 8: Experimental and computed tensile stress-strain curves for E-862 resin at strain 
rates of 5.7×10–5 /sec, 1.4 /sec and 455 /sec. 
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Figure 9: Effect of mean stress effect variable α on tensile stress-strain curve for PR520 
resin at 5×10–5 /sec. 
 

 
 
Figure 10: Schematic showing relationship between unit cell and slices for 
micromechanics. 

0

10

20

30

40

50

60

70

80

90

100

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Strain

S
tr

es
s 

(M
P

a) Experiment

Computed-Varying Alpha

Computed-Constant Alpha

Computed-Alpha=0

Unit Cell

Fiber

Portion of Sliced Unit Cell Analyzed

Slice of Unit Cell

Sliced Unit Cell
Circular Fiber

Sliced Unit Cell
Rectangular Fiber Slices



NASA/TM2002-211702 25 

Figure 11: Experimental and computed compressive stress-strain curves for PEEK 
thermoplastic at strain rates of 1×10–5 /sec, 1×10–3 /sec, 0.01 /sec and 0.1 /sec. 
 

Figure 12: Experimental and predicted tensile stress-strain curves for AS4/PEEK [30°] 
laminates at strain rates of 1×10–5 /sec and 0.1 /sec. 
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Figure 13: Experimental and predicted tensile stress-strain curves for AS4/PEEK [45°] 
laminates at strain rates of 1×10–5 /sec and 0.1 /sec. 
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